BEQUALM
NATIONAL MARINE BIOLOGICAL
ANALYTICAL QUALITY CONTROL SCHEME
Benthic Invertebrate Component Report
Scheme Operation - Year 17 - 2010/2011

David Hall
david.hall@unicomarine.com

September 2012

Thomson Unicomarine Ltd.
7 Diamond Centre
Works Road
Letchworth
Hertfordshire
SG6 1LW
www.unicomarine.com
1. Introduction 3

1.1 Summary of Performance 4
1.1.1 Statement of Performance 6

2. Summary of Benthic Invertebrate Component 6

2.1 Introduction 6
2.1.1 Logistics 6
2.1.2 Data Returns 6
2.1.3 Confidentiality 7

2.2 Invertebrate Ring Test Specimens (RT) Module 7
2.2.1 Description 7
2.2.2 Results 8
2.2.3 Discussion 12

2.3 Invertebrate Specimen Laboratory Reference (LR) Module 12
2.3.1 Description 12
2.3.2 Results 13
2.3.3 Discussion 13

2.4 Macrobenthic Samples (MB) Module 14
2.4.1 Description 14
2.4.2 Results 15
2.4.3 Discussion 18

2.5 Own Sample (OS) Module 20
2.5.1 Description 20
2.5.2 Results 21
2.5.3 Discussion 23
2.5.4 Application of NMBAQC Scheme Standards 24

3. Conclusions and Recommendations 31

4. References 35
Linked Documents (hyperlinked in this report)

Ring Test Bulletin – RTB#39
Ring Test Bulletin – RTB#40
Macrobenthic Exercise Results – MB18
Own Sample Module Summary Report – OS44, 45 & 46

Description of the Scheme Standards for the Benthic Invertebrate Component
1. **Introduction**

The National Marine Biological Analytical Quality Control (NMBAQC) Scheme addresses three main areas relating to benthic biological data collection:

- The processing of macrobenthic invertebrate samples.
- The identification of macrofauna.
- The determination of physical parameters of sediments.

The seventeenth year of the Scheme (2010/11) followed the format of the sixteenth year. A series of components, modules and exercises involved the distribution of test materials to participating laboratories and the centralised examination of returned data and samples. The labelling and distribution procedures employed previously have been maintained and specific details can be found in the Scheme’s annual reports for 1994/95 and 1995/96 (Unicomarine, 1995 & 1996).

Forty laboratories participated in the benthic invertebrate component of the NMBAQC Scheme in Year 17. Fifteen participants were Competent Monitoring Authorities (CMAs); twenty-five were private consultancies. Two of the participants were consortia of sole traders. Fourteen of the CMA participants were responsible for CSEMP (Clean Seas Environment Monitoring Programme) sample analysis (excluding subcontracted samples). To reduce potential errors and simplify administration, LabCodes were assigned in a single series for all laboratories participating in the benthic invertebrates, fish and particle size components of the NMBAQC Scheme (due to Thomson Unicomarine administering these three components).

As in previous years, some laboratories elected to be involved in limited aspects of the Scheme. CSEMP laboratories were required to participate in all components of the Scheme, although this was not strictly enforced.

In this report performance targets have been applied for the OS module only (see *Description of the Scheme Standards for the Benthic Invertebrate Component*). These targets have been applied to the results from laboratories and “Pass” or “Fail” flags assigned accordingly. As these data have been deemed the basis for quality target assessment, where laboratories failed to fulfil these components through not returning the data, a “Fail” flag has been assigned. These flags are indicated in the Tables presenting the comparison of laboratory results with the standards (see Table 5 in Own Sample Module Interim Summary Report – OS44, 45 & 46).
1.1 **Summary of Performance**

This report presents the findings of the Benthic Invertebrates component for the seventeenth year of operation of the National Marine Biological Analytical Quality Control (NMBAQC) Scheme.

This component consisted of four modules (each with one or more exercises):

- Analysis of a single estuarine macrobenthic sample (Macrobenthic Sample module).
- Re-analysis by Thomson Unicomarine Ltd. of three own samples supplied by each of the participating laboratories (Own Sample module).
- Identification of two sets of twenty-five invertebrate specimens (Invertebrate Ring Test module).
- Re-identification of a set of twenty-five specimens supplied by each of the participating laboratories (Laboratory Reference module).

The analytical procedures of the various modules were the same as for the sixteenth year of the Scheme, except for the specification that the Macrobenthic Sample module and CSEMP samples within the Own Sample module should be conducted using the NMBAQC guidance for macrobenthic invertebrate sample analysis (*Worsfold, Hall & O'Reilly* (Ed.), 2010). The results for each of the Scheme exercises are presented and discussed. Comments are provided on the performance for each of the participating laboratories in each of the exercises.

Two *Ring Tests* (RT) of twenty-five animal specimens were distributed. One set contained twenty-five general invertebrate fauna (RT39) and a second set consisted of ‘targeted’ specimens from taxa at the limit of their geographical range (RT40). For the general set of fauna (RT39) there was fairly good agreement between the identifications made by the participating laboratories and those made by Thomson Unicomarine Ltd. On average each participating laboratory recorded 3.9 generic errors and 6.3 specific errors. Over half of the specific errors can be attributed to four mollusc and two polychaete taxa. The ‘targeted’ ring test (RT40, taxa at the limit of their range), produced similar summary results to the standard exercise. On average each participating laboratory recorded 3.5 generic errors and 6.4 specific errors. Five specimens were misidentified by ten or more of the twenty-one participants and were responsible for 38% of all generic and 43% of specific errors recorded; these specimens comprised four mollusc and one oligochaete taxa.

Laboratory Reference (LR): The identification of a set of twenty-five species selected and supplied by the participating laboratories was generally accurate. No clear problem areas were identified. However, there were differences in the approach to this exercise by the individual
laboratories. For example, some laboratories used this as a test for confirming voucher specimens whilst others sought a means of having ‘unknowns’ identified.

Analysis of the **Macrobenthic sample (MB)** by the participating laboratories and subsequent re-analysis by Thomson Unicomarine Ltd. provided information on the efficiency of extraction of the fauna; accuracy of enumeration and identification and the reproducibility of biomass estimations. MB18 samples were artificially created by Thomson Unicomarine Ltd. to include set volumes of residue and known quantities of pre-identified fauna. These replicate samples have been based upon subtidal estuarine fauna and sediment from the Thames Estuary. Agreement between the laboratories and Thomson Unicomarine Ltd. was variable with generally poor results. This was the first MB exercise with strict extraction and processing instructions that are likely to account for some of the poor results. The samples posed some participants problems associated with faunal extraction and identification of the taxa. Extraction efficiency (of individuals), irrespective of sorting, was on average 81.6%; only one of the nine participating laboratories extracted greater than 90% of the individuals from the residue; two of the laboratories extracted less than 75% of the individuals. Comparison of the results from the laboratories with those from analysis by Thomson Unicomarine Ltd. (following the NMBAQC macrobenthic analysis guidelines) was made using the Bray-Curtis similarity index (untransformed). The value of the index varied between approximately 77.5% and 93.6% and was better than 90% in only 22% of comparisons and less than 85% in 56% of comparisons. Data from participants were in some cases clearly influenced by varying degrees of sieving effort, i.e. specimens within the artificial replicates were lost during sieve processing.

The Scheme year ten revised protocols for ‘blind’ Own Sample (OS) audits were continued in this Scheme year. Laboratories were to submit full completed data matrices from their previous year’s Clean Seas Environment Monitoring Programme (CSEMP 2009; formerly NMMP) samples or similar alternative sampling programmes (if not responsible for CSEMP samples). The OS ‘pass/fail’ flagging system, introduced in Scheme year eight, was continued (see Description of the Scheme Standards for the Benthic Invertebrate Component). The results for the Own Samples were generally much better than those from the Macrobenthic sample. Agreement between the laboratories and Thomson Unicomarine Ltd. was generally very good. Extraction efficiency, irrespective of sorting, was better than 90% in 96% of the comparisons and better than 95% in 87% of all comparisons. All countable faunal specimens were extracted from the sample residues in 52% (51) of the samples. The Bray-Curtis similarity index ranged from 35.4% to 100% with an average figure of 94.4%. The Bray-Curtis similarity index was greater than 95% in 78% of comparisons and in most cases (86%) the value of the index was greater than 90%, these samples all achieved ‘pass’ flags. Eighteen samples (18%) achieved ‘excellent’ pass flags with Bray-Curtis similarity scores of 100%.
1.1.1 Statement of Performance

Each participating laboratory was supplied with a ‘Statement of Performance’, which included a summary of results for each of the Scheme modules and details the resulting flags where appropriate. These statements were first circulated with the 1998/1999 annual report, for the purpose of providing evidence of Scheme participation and for ease of comparing year on year progress.

2. Summary of Benthic Invertebrate Component

2.1 Introduction

There are four modules within the benthic invertebrate component; Invertebrate Ring Test identification (RT), Laboratory Reference voucher specimen identification (LR), Macrobenthic sample analysis (MB) and Own Sample (OS) re-analysis modules.

Each of these modules is described in more detail below. A summary of their performance with respect to standards determined for the CSEMP is presented. A brief outline of the information to be obtained from each module is given, together with a description of the preparation of the necessary materials and brief details of the processing instructions given to each of the participating laboratories.

2.1.1 Logistics

The labelling and distribution procedures employed previously have been maintained and specific details can be found in the Scheme’s annual reports for 1994/95 and 1995/96 (Unicomarine, 1995 & 1996). Email was the primary means of communication for all participating laboratories. This has considerably reduced the amount of paper required for the administration of the Scheme.

2.1.2 Data Returns

Return of data to Thomson Unicomarine Ltd. followed the same process as in previous years. Spreadsheet based forms (tailored to the receiving laboratory) were distributed for each circulation via email, with additional hard copies where appropriate. All returned data have been converted to Excel 2003 format for storage and analysis. In this and previous Scheme years slow or missing returns for exercises lead to delays in processing the data and resulted in difficulties with reporting and rapid feedback of results to laboratories. Reminders were distributed shortly before each exercise deadline.
2.1.3 **Confidentiality**

To preserve the confidentiality of participating laboratories, each are identified by a four-digit Laboratory Code. In September 2010 each participant was given a confidential, randomly assigned Scheme year seventeen LabCode. Codes are prefixed with the Scheme year to reduce the possibility of obsolete codes being used inadvertently by laboratories, *e.g.* Laboratory number four in Scheme year seventeen will be recorded as LB1704.

In this report all references to Laboratory Codes are the post-August 2010 codes (Scheme year seventeen), unless otherwise stated. To further reduce potential errors and simplify administration, LabCodes were assigned in a single series for all laboratories participating in the benthic invertebrate, fish and particle size analysis components of the NMBAQC Scheme (due to Thomson Unicomarine administering these three components).

2.2 **Invertebrate Ring Test Specimens (RT) Module**

2.2.1 **Description**

This training module examined inter-laboratory variation in the participants’ ability to identify fauna and attempted to determine whether any errors were the result of inadequate keys, lack of reference material (*e.g.* growth series), or the incorrect use of satisfactory keys.

Two sets of twenty-five benthic invertebrate specimens were distributed in 2010/11. The first of the year’s RT circulations (RT39) was a general invertebrate ring test. The specimens included representatives of the major phyla; 32% of the taxa were molluscs, 28% were crustaceans, 24% were annelids, 8% were echinoderms and 8% from minor phyla. The second circulation (RT40) comprised ‘targeted’ specimens of taxa found at the limit of their range; participants were not aware of the theme of this exercise. The specimens included representatives of the major phyla; 52% of the taxa were molluscs, 28% were crustaceans and 20% were annelids (16% polychaetes and 4% oligochaetes). Details of substratum, salinity, depth and geographical location were provided for all ring test specimens to assist identification.

2.2.1.1 **Preparation of the Samples**

The specimens distributed were obtained from a range of surveys from around the UK. Specimens were also donated by Scheme participants and other organisations. Every attempt was made to provide animals in good condition and of similar size for each laboratory. Each specimen sent was uniquely identifiable by means of a coded label and all material has been retained for subsequent checking. Where relevant, every effort was made to ensure all specimens of a given species were of the same sex.
For the standard RT (RT39) and the ‘targeted’ RT (RT40), all specimens were taken from replicate trawls, grabs or cores within a single survey and in most cases they were replicates from a single sampling station.

2.2.1.2 Analysis Required

The participating laboratories were required to identify each of the RT specimens to species and provide the Species Directory code (Howson & Picton, 1997) for the specimen (where available). If a laboratory would not routinely have identified the specimen to the level of species then this should be detailed in the ‘confidence level’ field. Laboratories can also add brief notes and information on the keys or other literature used to determine their identifications. Specimens were to be returned to Thomson Unicomarine Ltd. for verification, resolution of any disputed identifications and potential re-use in future Scheme exercises. The implementation of this part of the Scheme was the same as previous years. The two RT circulations were accompanied by details of each specimen’s habitat details (depth, salinity, substratum, and geographical location). Participating laboratories were permitted to supply multiple data entries (i.e. different sets of results from different analysts) for each exercise to enhance the training value of this module. The protocols followed for the two circulations, in particular the method of scoring results, were the same as for previous circulations. Approximately eight weeks were allowed for the analysis of the both RT exercises (RT39 and RT40).

2.2.2 Results

2.2.2.1 General Comments

A number of laboratories use these modules of the Scheme for training purposes and have selected them preferentially over other modules. CSEM laboratories are required to participate in this component though it is not used when assigning ‘pass’ or ‘fail’ flags. In total twenty-three laboratories were distributed with RT39 and twenty-two received RT40 specimens. For RT39, all twenty-three laboratories returned data (twenty-four individual data sets). For RT40, twenty-one laboratories returned data (twenty-two individual data sets).

2.2.2.2 Returns from Participating Laboratories

Each laboratory returned a list of their identifications of the taxa. The identifications made by the participating laboratories were then compared with the AQC identifications to determine the number of differences. A simple character-for-character comparison of the text of the two names (the AQC identification and the laboratory identification) was the starting point for this determination and provided a pointer to all those instances where (for whatever reason) the
names differed. Each of these instances was examined to determine the reason for the difference.

As previously found, the main cause of an identification being different from the AQC identification was through differences in spelling of what was clearly intended to be the same species or the use of a valid synonym. There were several examples of these differences:

- Use of a different synonym for a taxon, e.g. *Hydrobia jenkinsi* for *Potamopyrgus antipodarum*.
- Simple mis-spelling of a name, e.g. *Exogene verugea* for *Exogone verugera*.

NB. For the purposes of calculating the total number of differences in identification made by each laboratory a difference was ignored if it was clearly a result of one of the above.

Tables 1 and 2 (Ring Test Bulletin – RTB#39) presents the identifications made by each of the participating laboratories for the twenty-five specimens in circulations RT39, arranged by specimen and by laboratory respectively. Tables 1 and 2 (Ring Test Bulletin – RTB#40) present the identifications made by each of the participating laboratories for the twenty-five specimens in circulations RT40, arranged by specimen and by laboratory respectively. For clarity the name is given only in those instances where the generic or specific name given by the laboratory differed from the AQC identification. Where it was considered that the name referred to the same species as the AQC identification but differed for one of the reasons indicated above, then the name is presented in brackets “[name]”. Errors of spelling or the use of a different synonym are not bracketed in this way if the species to which the laboratory was referring was not the same as the AQC identification. A dash, “-”, in the Tables indicates that the name of the genus (and / or species) given by the laboratory was considered to be the same as the AQC identification. A pair of zeros, “0 0”, in the Tables indicates that the subscribing laboratory did not return data.

2.2.2.2.1 Scoring of RT Results

The method of scoring was to increase a laboratory’s score by one for each difference between their identification and the AQC identification, i.e. for each instance where text other than a dash or a bracketed name appears in the appropriate column in the tables (Tables 1 and 2 in RTB39 and RTB40). Two separate scores were maintained; for differences at the level of genus and species. These are not independent values, if the generic level identification was incorrect then the specific identification would normally also be incorrect, though the reverse is not necessarily the case.
2.2.2.3 Ring Test Distribution Results

The RT circulations are designed as a learning exercise to discover where particular difficulties lie within specific common taxa. Results were forwarded to the participating laboratories as soon as practicable. Each participant also received a ring test bulletin (RTB39 and RTB40), outlining the reasons for each individual identification discrepancy. These bulletins contained images of the test material and the alternative, incorrectly recorded taxa, where available. Participating laboratories were instructed to retain their ring test specimens, for approximately four weeks after the arrival of their results, to facilitate an improved learning dimension via the essential ‘second look’. RT39 and RT40 specimens were required to be returned to Thomson Unicomarine for potential future circulation.

2.2.2.3.1 Thirty-ninth Distribution – RT39

Table 2 (Ring Test Bulletin – RTB#39) presents the results for the RT39; Table 1 displays these data arranged by species to enable quick reference to the range of answers received. Eight of the twenty-five specimens circulated were molluscs; seven were crustaceans; six were polychaetes; two were echinoderms; and two were from minor phyla. The agreement at the generic level was generally good; ninety-three errors (from a potential six hundred) were recorded in the twenty-four data sets received from twenty-three participating laboratories. Agreement at the specific level was generally poor; one hundred and fifty-one errors were recorded, over a quarter of all specific identifications. Six of the specimens circulated were incorrectly identified at species level by at least 46% of the participants. These taxa, responsible for the majority of specific differences, are described briefly below.

The bulk of the errors recorded could be attributed to six specimens. *Leptochiton cancellatus* (medium, good specimen), *Jasmineira caudata* (medium, poor specimen), *Musculus discors* (small, good specimen), *Axinulus croatilensis* (small, good specimen), *Lekanesphaera levii* (medium, good specimen) and *Pusillina inconspicua* (medium, good / fair specimen) accounted for a total of 45% of all generic and 56% of all the specific differences recorded. One of these specimens, *Lekanesphaera levii*, was incorrectly identified at species level by all except six participants, however just five generic errors were recorded. None of the twenty-five circulated specimens were correctly identified by all participating laboratories. Further details and analysis of results can be found in the Ring Test Bulletin (Ring Test Bulletin – RTB#39) which was circulated to each laboratory that supplied results for this exercise and was also posted on the Scheme’s website (www.nmbaqcs.org).

2.2.2.3.2 Fortieth Distribution – RT40

RT40 contained twenty-five specimens from taxa at the limit of their range in UK waters. The recognition and ability to identify these taxa is of particular importance for tracking range extensions and alien species dispersion. Thirteen of the twenty-five specimens circulated were
molluscs; seven were crustaceans; and five were annelids. One of the specimens was donated by Ulrich Lobsiger (McGregor GeoScience). The results from the circulation are presented in Table 2 (Ring Test Bulletin – RTB#40) in the same manner as for all previous RT circulations. Table 1 displays these data arranged by species to enable quick reference to the range of answers received. The agreement at the generic level was generally good; seventy-five errors (from a potential five hundred and fifty; 14% of all the generic identifications) were recorded in the twenty-two data sets received from twenty-one participating laboratories. Agreement at the specific level was generally poor; one hundred and forty-two errors (26% of all species identifications) were recorded. Six of the specimens circulated were incorrectly identified at species level by at least 45% of the participants. These taxa, responsible for the majority of differences, are described briefly below.

The bulk of the errors recorded could be attributed to six specimens. *Gibbula pennanti* (medium, good specimen), *Barleeia unifasciata* (medium, good specimen), *Potamopyrgus antipodarum* (small / medium, good / fair specimen), *Tubificoides heterochaetus* (medium, fair specimen), *Ensis directus* (large, good specimen) and *Thyasira equalis* (medium, fair specimen) accounted for a total of 40% of all generic and 54% of all the specific differences recorded. Two of the twenty-five circulated specimens were correctly identified by all participating laboratories; these specimens were *Sternaspis scutata* (small, good specimen) and *Apocorophium lacustre* (medium, female, fair specimen). Further details and analysis of results can be found in the ring test bulletin (Ring Test Bulletin - RTB#40) which was circulated to each laboratory that supplied results for this exercise and was also posted on the Scheme’s website (www.nmbaqcs.org).

2.2.2.4 Differences between Participating Laboratories

The ring test bulletins (Figure 1 in RTB39 and Figure 1 in RTB40) present the number of differences recorded at the level of genus and species for each of the participating laboratories, for RT circulations RT39 and RT40. The laboratories are ordered by increasing number of differences at the level of species. The division of laboratories into three bands (Low, Medium and High) on the basis of the number of differences at the level of species is also shown.

2.2.2.5 Differences by Taxonomic Group

Most of the differences of identification in the two ring test exercises were of molluscs. Mollusc specimens (twenty-one specimens in total) were responsible for 66% of generic differences and 62% of the total number of specific differences. Fourteen of the total fifty specimens circulated were crustaceans and these produced 17% of the generic and 16% of the specific differences recorded. Eleven annelid specimens were responsible for 14% of generic
differences and 17% of the total number of specific differences. The remaining 3% of generic and 2% of specific error were attributed to four echinoderm and minor phyla specimens.

2.2.3 Discussion

The results were in general comparable with those from all previous exercises, with a high level of agreement between participating laboratories for the majority of distributed species. The RT component is considered to provide a valuable training mechanism and be an indicator of problem groups and possible areas for further ‘targeted’ exercises or inclusion at taxonomic workshops. Multiple data entries from each laboratory and the inclusion of images in the ring test bulletins (RTB) have enhanced the learning value of this component.

RT39 identified potential discrepancies with literature used by some participating laboratories for their identifications, details of useful literature were provided in the ring test bulletin. Two different identifications have been deemed correct in the interim for specimen RT3923, *Scoloplos armiger* / *Leitoscoloplos mammosus*. These individuals were of an intermediate form and have been sent to Dr Andrew Mackie for an external opinion. Two laboratories (LB1714 and LB1717) recorded just one specific error. All participating laboratories have been made aware of the variety of problems encountered for these ring tests via the RT39 ring test bulletin (*Ring Test Bulletin - RTB#39*).

RT40 identified potential discrepancies with the ability of some participating laboratories to identify taxa at the limit of their range in UK waters, including alien species. These taxa are of particular importance for classifying water bodies and monitoring climate change. The best performance in this exercise was achieved by LB1706, with just one generic and one specific difference. All participating laboratories have been made aware of the variety of problems encountered for these ring tests via the RT40 ring test bulletin (*Ring Test Bulletin - RTB#40*).

2.3 Invertebrate Specimen Laboratory Reference (LR) Module

2.3.1 Description

This training module encourages laboratories to build extensive, verified reference collections to improve identification consistency. The value of reference material in assisting the process of identification cannot be over-emphasised; the creation and use of reference collections are viewed as best practice. Accordingly the Laboratory Reference (LR) module of the Scheme was introduced in Scheme year three (1996/97). This module assesses the ability of participating laboratories to identify material from their own area, or with which they are familiar. This was the fifteenth Laboratory Reference exercise (LR15). The participants were required to submit a reference collection of twenty-five specimens for re-examination by
Thomson Unicomarine Ltd. Laboratories are also permitted to use this exercise to verify identifications of difficult or problematic taxa about which they are unsure.

2.3.1.1 Selection of Fauna

The different geographical distributions of species meant that a request for a uniform set of species from all laboratories was unlikely to be successful. Accordingly a list of instructions was distributed to participating laboratories. The specimens were to broadly represent the faunal groups circulated in the general Ring Tests, i.e. mixed phyla. However, each laboratory was permitted to include any number of unidentified or problematic taxa. Specimens wherever possible were to be representatives from CSEMP reference collections.

2.3.1.2 Analysis

A prepared results sheet was distributed with the exercise’s instructions and attached labels for the laboratories to identify each of the specimens. Participating laboratories were permitted twelve weeks to prepare and submit their reference specimens. All specimens were re-identified and the identification made by Thomson Unicomarine Ltd. compared with that made by the participating laboratories. All specimens were returned to the laboratories after analysis.

2.3.2 Results

2.3.2.1 General Comments

Of the sixteen laboratories participating in this exercise (LR15), eleven laboratories supplied specimens for verification; five laboratories did not submit specimens or provide notification of abstention from this exercise.

2.3.2.2 Returns from Participating Laboratories

The identification of the specimens received from the participating laboratories was checked. Detailed results have been reported to each of the participating laboratories separately. Due to this component’s emphasis upon training and the diversity of submissions, comparisons of results are not applicable and as such no summary statistics are provided in this report.

2.3.3 Discussion

In view of the different species that were sent by laboratories for identification it is inappropriate to make detailed inter-lab comparisons. In the majority of instances identifications made by Thomson Unicomarine Ltd. were in agreement with those made by the participating laboratories. Due to the range of species submitted it was not possible to identify a single taxon causing the majority of problems.
Despite the free format of specimen choice in this module, only approximately two thirds of the subscribing laboratories supplied specimens. The module deadlines and instructions will be reviewed to improve submission levels, if possible.

The results for this exercise should be viewed giving consideration to the different approaches by participant laboratories. Some laboratories appear to be sending well known species while others elect to obtain a ‘second opinion’ on more difficult species. Thus the scores are not comparable and it is not considered appropriate to assign any rank to the laboratories. Each participant should deliberate upon the aims of this component in terms of data quality assessment.

2.4 Macrobenthic Samples (MB) Module

2.4.1 Description

This training module examined the participants’ ability to process macrobenthic samples from the same habitat. Artificial, uniformed grab samples containing ‘known’ estuarine fauna were created and distributed to each participating laboratory. This part of the Scheme examined differences in sample processing efficiency and identification plus their combined influence on the results of multivariate analysis. In addition, an examination of the estimates of biomass made by each of the participating laboratories was undertaken.

2.4.1.1 Preparation of the Samples

MB18 samples were artificially created estuarine samples based upon subtidal fauna and sediment from the Thames Estuary. The distributed samples were created using fauna donated by the Environment Agency from a previously audited WFD survey. Approximately 175ml of mud (<0.5mm; PS36 residue), 25ml of fine sand (<0.5mm; PS37 residue), 25ml of shell fragments (<1mm; unwanted OS residues) and some leaf matter (>1mm; terrestrial plant) were added to each replicate to produce a relatively accurate sample composition (0.225 litres in total). The samples contained twenty taxa and one-hundred and fifty-eight individuals, covering a variety of phyla. Faunal fragments were also included to observe potential variances in their treatment. All specimens were checked for quality and size consistency, using the same protocols as the Scheme’s RT module; enumeration of each taxon was carefully checked and verified prior to their addition to the replicate samples. The fauna and sediment were gently mixed in 70% IDA (Industrial Denatured Alcohol) prior to distribution to the participating laboratories. For further details of the samples components refer to the MB18 Report.
2.4.1.2 Analysis Required

Each participating laboratory was required to carry out sorting, identification, enumeration and biomass estimations of the macrobenthic fauna contained in the sample. Precise protocols were provided (Appendix 1 of MB18 Report; Worsfold, Hall & O’Reilly, 2010). The participating laboratories were required to complete a Macrobenthic Sample Details Form, which specified their processing methodology. The extracted fauna were to be separated, identified and stored in individually labelled vials. Labels were provided and cross-referenced to the recording sheets.

In addition, measurements of the biomass of the recorded taxa were requested. Detailed instructions were provided for this exercise; measurements were to be blotted wet weights to 0.0001g for each of the enumerated taxa.

Twelve weeks were allowed for completion of the sample analysis. All sorted and unsorted sediments and extracted fauna were to be returned to Thomson Unicomarine Ltd., together with the data on counts and biomass determinations.

2.4.1.3 Post-return Analysis

Upon return to Thomson Unicomarine Ltd. the various components of the MB samples were re-examined. All extracted fauna was re-identified and re-counted for comparison with the participating laboratory’s own counts. The sample residues were re-sorted and any missed fauna removed, identified and counted. All fauna weighed by the participating laboratories were re-weighed to 0.0001g by the same member of Thomson Unicomarine Ltd. staff using a standard technique.

2.4.2 Results

2.4.2.1 General Comments

The distributed macrobenthic sample (MB18) was an artificial replicate estuarine sample based upon subtidal fauna and sediment from the Thames Estuary. Nine of the ten laboratories subscribing to this module returned fauna and data for re-analysis. None of the participating laboratories subsampled their residues. Three participating laboratories did not supply biomass data. A report for this exercise was distributed to the participating laboratories (Macrobenthic Exercise Results – MB18) and was also posted on the Scheme’s website (www.nmbaqcs.org); additional comments are added below.
2.4.2.2 Efficiency of Sample Sorting

Table 1 (MB18 Report) presents a summary of the estimate of numbers of taxa and individuals made by each of the participating laboratories for sample MB18, together with the corresponding count made by Thomson Unicomarine Ltd prior to sample dispatch. Comparison of the number of taxa and number of individuals between the participating laboratory and Thomson Unicomarine Ltd. is given as a percentage. Prior to analyses of these data some minor adjustments (combination of juvenile taxa, spelling errors, removal of spaces, etc.) were made to allow direct comparisons to be made and remove artificial differences in these data. Table 2 shows the composition of fauna missed by each participating laboratory. Table 3 shows the individuals lost/missing from the returned replicate samples.

2.4.2.3 Number of Taxa

Column 5 in Table 1 shows variation between laboratories in the percentage of taxa identified in the samples. At most five taxa (and 25% of the total taxa in the sample) were not extracted, lost during sieving or not recognised within the picked material. One laboratory recorded the same number of taxa as Thomson Unicomarine prepared within the artificial samples (LB1702). All eight remaining participants recorded fewer taxa than Thomson Unicomarine Ltd.

The simple comparison of numbers of taxa can be misleading as taxa counts are affected by inaccuracies in identification, e.g. ‘over splitting’ (separating a single taxon incorrectly into multiple taxa). For example, LB1608 recorded two fewer taxa than circulated in the artificial replicate distributed, but missed/lost a further four taxa in their residue.

The values presented for the number of taxa not extracted (column 10) represent taxa not recorded or extracted (even if misidentified) elsewhere in the results, i.e. these were taxa completely missed or sieved from the artificial sample by the laboratory. Two laboratories (LB1701 and LB1702) extracted representatives of all the taxa present in their samples. On average laboratories missed less than two taxa in their residues and in the worst instance four new taxa were missed during the picking stage of this exercise.

2.4.2.4 Number of Individuals

Re-sorting of the sample residues by Thomson Unicomarine Ltd. retrieved additional individuals from all of the nine participants’ samples; these data are presented in columns 11 and 12 of Table 1. It must be noted that several specimens not extracted by the participating laboratories were also not found during the residue resorting, these specimens have been attributed to processing loss, e.g. passing through or over the 0.5mm sieve. The number of
individuals not extracted from the sample (column 11) is given as a percentage of the total number in the sample (including those missed) in column 12 (i.e. column 12 = column 11 / column 7 %). The proportion of missed individuals in all of the samples was less than 18% of the true total number in the sample. In the worst instances seventy-two individuals and 45.6% of the total number of individuals were not extracted during the initial sample processing. The average number of missed individuals found upon re-sorting the residue was twenty-nine. A breakdown of the missed individuals by taxonomic group is presented in Table 2. Molluscs and ‘others’ (Dolichopodidae larva) were the best ‘picked’ faunal groups with all nine participating laboratories extracting all the ‘other’ specimens; only one of the nine participating laboratories failed to extract all the molluscs present in the sample. Oligochaeta were the worst extracted faunal group, with all laboratories failing to extract all individuals and one laboratory failing to record over 60% of the specimens supplied in their artificial sample.

2.4.2.5 Uniformity of Identification

Several of the species in the distributed sample were identified incorrectly by the participating laboratories. Only two of the participating laboratories (LB1706 and LB1708) had no taxonomic differences, i.e. disagreement with the AQC identification (Table 1, column 15 in the MB18 Report). In the worst instances seven taxonomic differences were recorded. On average 3.1 taxonomic differences were encountered per sample.

2.4.2.6 Comparison of Similarity Indices (Bray-Curtis)

The fauna list for each sample obtained by the participating laboratory was compared with the list of fauna artificially created by Thomson Unicomarine Ltd. The comparison was made by calculating the Bray-Curtis similarity index for the pair of samples using non-transformed data. Prior to analyses of these data some minor adjustments were made to allow direct comparisons to be made, e.g. separating / combining adults and juveniles to reflect a common identification policy and remove artificial differences in these data (see notes on Figure 2). The results of this calculation are presented in column 14 of Table 1 (MB18 Report). There was variation among laboratories in the values calculated for the index, from 37.5% to 93.6%, with an average value of 77.7%. The index for the majority of laboratories (7 of 9) was below 90%; these seven laboratories would have achieved ‘fail’ sample flags if the NMBAQC / CSEMP standards were applied. Thomson Unicomarine’s in-house taxonomic discrimination policy (TDP) was applied to examine the Bray-Curtis similarity indices with a standardised identification policy, these data are presented in column 16 of Table 1. Further details of each participating laboratory’s performance are given in the Macrobenthic Exercise Results Report.

2.4.2.7 Biomass Determinations

A comparison of the estimates of the biomass made by the participating laboratories and Thomson Unicomarine Ltd. broken down by major taxonomic group for the MB18 circulation is
presented in Table 4. Three laboratories did not supply biomass data. The average difference between the two total weight values was +30.3% (i.e. heavier than that made by Thomson Unicomarine Ltd.), with variable measurements by major faunal groups. The range of overall biomass percentage difference results, between participating laboratories and Thomson Unicomarine Ltd., was from +16.2% (measurements by laboratory were heavier than those made by Thomson Unicomarine Ltd.) to +43.9% (measurements by laboratory were greater than those made by Thomson Unicomarine Ltd.). There was great variation in biomass estimations between participating laboratories and between taxonomic groups. The average difference between estimations varied greatly between faunal groups, ranging from +8.7% to +32.2% (from other minor phyla to Polychaeta, respectively).

2.4.2.8 Uniformity of Samples

MB18 was an artificial sample created by Thomson Unicomarine, the residue and faunal content of the samples distributed are shown in Sheet 1 and Table 5. The samples can be best assigned to the *Aphelochaeta marioni* and *Tubificoides* spp. in variable salinity infralittoral mud biotope (SS.SMu.SMuVS.AphTubi) (Connor *et al.* 2004). All fauna included in MB18 were obtained from samples previously analysed with a 0.5 mm sieve mesh. However, it was noted during MB18 preparation that a number of the specimens added to the residue could be lost according to the degree of sieving employed by the participating laboratories.

2.4.3 Discussion

The sample distributed as MB18 comprised an artificial, but typical, estuarine sample. The sample comprised relatively high numbers of oligochaete species (*Tubificoides benedii*, *T. pseudogaster* agg., *Heterochaeta costata* and Enchytraeidae). All participants were instructed to follow the NMBAQC guidelines for macrobenthic sample analysis, this entails the extraction and recording of all biota within macrobenthic samples (Appendix 1, MB18 Report). None of the participating laboratories extracted all the countable material from the residue. In the worst instances seventy-two individuals, 46% of the total individuals, were not extracted from the residue. Identification caused various problems for a minority of laboratories; two of the nine participating laboratories correctly identified their entire extracted fauna. There were a total of twenty-eight taxonomic errors from seven of the participants, these included misidentifications of *Corophium multiseta*, *C. volutator*, *Tharyx* sp. A and Enchytraeidae (in order of frequency). Only two of the thirteen returning laboratories attained a Bray-Curtis similarity index above 90%. The highest Bray-Curtis similarity index achieved was 93.6% (LB1706). The average Bray-Curtis figure achieved was 77.7%. This figure is much lower than the figure recorded for the previous estuarine sample in the MB module (MB16). The average for MB17 (coastal) was 92.7%, average Bray-Curtis similarity index achieved for MB16 (estuarine) was 95.5%, the average for MB15 (coastal) was 92.4%, the average for MB14 (estuarine) was 89.9%, MB13 (coastal) was 97%, MB12 (estuarine) was 77%, MB11 (an artificial coastal
sample) was 93%, MB10 (estuarine) was 88%, MB09 (coastal) was 93%, MB08 (estuarine) was 95%, MB07 (coastal) was 88%, MB06 (estuarine) was 91%, MB05 (coastal) was 85% and MB04 (estuarine) was 82%.

Table 5 shows the variation, by major Phyla, between reported data from the participating laboratories for those artificial samples circulated for the macrobenthic exercise (MB18). All samples were provided with exact components of residue and fauna, including faunal fragments. All differences can be attributed to sample processing (sieving / extracting / identification) procedures.

The need for a standard macrobenthic sample taxonomic discrimination policy was clearly emphasised by this exercise. Nine exact replicate samples produced some relatively poor similarity figures from the participant laboratories prior to data adjustments to improve taxonomic discrimination differences. The adjustments included several faunal groups; Tubificoides pseudogaster combined with T. pseudogaster agg.; Gammaridae and Gammaridae indet. with Gammaridae juv.; Capitella capitata and C. capitata agg. with Capitella sp.; Mytilus edulis with M. edulis juv.; Tharyx 'type 1' with Tharyx 'species A'; Nereis diversicolor with Hediste diversicolor; Streblospio benedicti with S. shrubsolii. Also all spelling errors were corrected. Such adjustments could not be possible in 'normal' samples with data processed by 'remote' database managers.

The 'blot-drying' procedure employed by Thomson Unicomarine Ltd. for the determination of biomass was as specified in the Green Book, i.e. avoiding excessive pressure when blotting specimens dry. However, there remains a considerable variation between the estimates of total biomass made by the participating laboratories and Thomson Unicomarine Ltd. Six laboratories provided biomass data; all participants provided data that was heavier in total than Thomson Unicomarine Ltd. estimations. The extremes recorded were 16.2% heavier (LB1705) and 43.9% heavier (LB11708) than the Thomson Unicomarine Ltd. estimations. Overall the average difference between the values determined by the participating laboratories and Thomson Unicomarine Ltd. was +30.3% (i.e. laboratory measurements were heavier than those made by Thomson Unicomarine Ltd.). Previous Scheme years have not shown any particular pattern of variance for biomass estimations; the last five year's average biomass difference figures were 2.6% lighter (MB17), 3.4% lighter (MB16), 2.4% heavier (MB15), 2.3% lighter (MB14) and 9.9% heavier (MB13). It seems likely that the main reasons for the observed differences between the measurements are more thorough, or less consistent, drying by participating laboratories prior to weighing. A similar observation was made in previous years of the Scheme. The average percentage difference between Thomson Unicomarine Ltd. and participating laboratories biomass figures for MB12 was +2.2%, MB11 was -3.1%, MB10 was -13.3%, MB09 was -14.6%, MB08 it was +4.9%, MB07 it was -1.67%, MB06 it was +26%, MB05 it was +32% and for MB04 it was +20%. There are likely to
be several reasons for the differences between years, though the nature of the fauna in the distributed samples is likely to be of particular importance.

Clearly, determination of biomass remains a problem area warranting further examination. Although all laboratories are following the same protocol it is apparent that different interpretations are being made of the degree of drying required. When single specimens of small species are being weighed (*e.g.* amphipods) very small differences in the effectiveness of drying will make large percentage differences in the overall weight recorded. It must be noted that the Green Book recommends that ash-free dry weights for biomass are derived from the blotted wet weights using published conversion factors. However the details of techniques used to determine initial wet weights for these conversion factors may vary from those specified in the Green Book. A series of trials should be commissioned to ascertain the best methods for accurate and consistent ‘blotted’ dry weight figures which can in turn be reliably applied to existing or new conversion factors.

2.5 Own Sample (OS) Module

2.5.1 Description

This exercise examined laboratory analytical performance on material from each participating laboratory’s ‘home’ area. Following a review of the Own Sample exercise (*Unicomarine, 2001*) several changes to sample selection and scoring were implemented in Scheme year eight (2001/02). All participants must meet the new Own Sample requirements. Own Sample participants must supply their previous year’s CSEMP data matrices, where relevant, for Own Sample selection, *i.e.* 2009 CSEMP data. This is to ensure that all processing is completed, preventing reworking of the selected Own Samples and enabling samples to be audited earlier in the Scheme year. Each participating laboratory was requested to send a data matrices from which three samples were selected. The selection was in turn notified to the laboratories. Laboratories responsible for CSEMP samples were advised to use these samples if possible, otherwise there was free choice providing a minimum of twelve samples were included in the submitted data matrix.

2.5.1.1 Analysis Required

Participating laboratories were instructed to have conducted macrobenthic analysis of the samples using their normal procedures. A summary of these in-house sample processing procedures was to be provided, on a standard form, with each Own Sample. Samples requiring sub-sampling were to be avoided where possible. All procedures were to be documented and details returned with the sample components. All material from the sample was to be sent to Thomson Unicomarine Ltd. broken down as follows:
Sorted residue - material from which all animals had been removed and counted.
Separated taxa - individually labelled vials containing the identified fauna.
Other fractions - e.g. material containing fauna which had been counted in situ.

Identification was to be to the normal taxonomic level employed by the laboratory (presumed to be usually species), except for CSEM samples where the NMBAQC guidelines for macrobenthic sample analysis were to be followed (Worsfold, Hall & O'Reilly (Ed.), 2010). The names and counts of specimens were to be recorded on a matrix and linked to the vials through a specimen code number. Biomass analysis was to be carried out in the same manner as for the MB exercise.

Twelve weeks were allowed for the submission of data and preparation of the Own Samples selected for reanalysis. Upon receipt at Thomson Unicomarine Ltd. all OS samples were reanalysed by the same operator. The sorted residue was re-examined and any countable material extracted. Identified fauna was checked for the accuracy of enumeration and identification and all specimens were re-weighed using the same procedure as for the MB exercise.

2.5.2 Results

2.5.2.1 General Comments

Following the request to participating laboratories to submit data of suitable samples for reanalysis, ninety-nine selected Own Samples were received from thirty-three laboratories, together with descriptions of their origin and the collection and analysis procedures employed; two laboratories did not submit data for OS selection. Samples were identified as OS44, OS45 and OS46 and labelled with LabCodes. The nature of the samples varied considerably. Samples were received from estuarine and marine locations, both intertidal and subtidal. The sediment supplied for resorting varied from mud to gravel and from 8 L to 5 ml of residue. The associated fauna of the samples was also very varied; the number of taxa recorded ranged from 3 to 132, with the number of countable individuals from 3 to 4923. Thirty-three of the thirty-seven laboratories that subscribed to the OS module returned three Own Samples; seventeen of these Own Samples are to be audited externally by Aquatic Environments due to Thomson Unicomarine Ltd. being responsible for the initial sample processing; four laboratories did not supply data for sample selection, one communicated their abstention. Detailed results have been reported to the participating laboratories. A summary of results from the Own Sample module is presented in the Own Sample Module Summary Report (OS44, 45 & 46).
2.5.2.2 Efficiency of Sample Sorting

Table 1 (Own Sample Module Summary Report – OS44, 45 & 46) displays a summary of the data obtained from the analysis of the Own Sample exercise. All taxa identified and enumerated by the participating laboratory were included in the analysis, except in instances where the fauna had been damaged and rendered unidentifiable and uncountable. In sixty-one samples (62% of all samples) the number of taxa recorded by the participating laboratories was identical to that obtained by Thomson Unicomarine Ltd. (column 4). In the thirty-eight exceptions, the difference was at most twelve taxa and the average difference was less than half a taxon.

Data for the numbers of individuals recorded (columns 6 and 7, Table 1) shows a range of differences from re-analysis of between 0% and 26.7%. The average difference was 2.5% (twenty-five samples exceeded this average). Fifty-one of the ninety-nine samples reported showed 100% extraction of fauna from the residue (column 12), and in twenty-seven samples various numbers of individuals (but no new taxa) were missed during sorting (column 11). The remaining twenty-one samples contained taxa in the residue that were not previously extracted, the worst example being eleven new taxa found in the residue (column 10). In the worst instance residue was found to contain ninety-one individuals. A breakdown of the missed individuals by taxonomic group is presented in Table 2. The average number of missed individuals found upon re-sorting the residue was approximately four, and the average number of missed taxa was less than half.

2.5.2.3 Uniformity of Identification

Taxonomic differences between Thomson Unicomarine Ltd. and participating laboratories’ results were found in forty-four (44%) of the ninety-nine samples re-analysed. A summary of mis-identified taxa is presented in Table 3 (Own Sample Module Summary Report – OS44, 45 & 46). An average of 1.3 taxonomic differences per laboratory were recorded; in the worst instance nineteen differences in identification occurred. A great variety of samples (and hence fauna) was received. Polychaetes accounted for 43% of the taxonomic errors recorded; Mollusca accounted for 36%. Some taxonomic errors were more frequently recorded, these included Abra spp., Nucula spp. and Bathyporeia spp.. These recurring mis-identifications may be the result of repeat taxonomic errors from a few laboratories responsible for the analysis of several Own Samples, i.e. subcontractors processing samples for several Scheme participants.

2.5.2.4 Comparison of Similarity Indices (Bray-Curtis)

The procedure for the calculation of the similarity index was as used for the MB exercise. The Bray-Curtis similarity index figures (Table 1, column 14) ranged from 35.4% to 100%, with an
average figure of 94.4%. Fourteen samples from nine laboratories achieved a similarity figure of less than 90%. Eighteen samples produced a similarity figure of 100%; these were submitted by eleven different laboratories (LB1707, LB1713, LB1715, LB1717, LB1718, LB1726, LB1727, LB1733, LB1734, LB1736 and LB1741). The best overall results were achieved by laboratories LB1707 and LB1715, which averaged 100% similarity across their three Own Samples. The worst overall results were achieved by laboratory LB1720, whose results comprised 65.12%, 35.36% and 43.36% (an average of 47.94%). It should be noted that a small number of differences between samples can result in a large difference in the Bray-Curtis index. This difference does not necessarily reflect the laboratory’s analytical ability.

2.5.2.5 Biomass Determinations

It was not possible to make an accurate comparison of the biomass determination in all cases; fifty-eight samples were not supplied with species blotted wet weight biomass data; four samples were reported to five decimal places (grammes to 4 decimal places is required). Consequently, only thirty-three of the ninety-nine samples received have been used for comparative analysis. Table 4 shows the comparison of the participating laboratory and Thomson Unicomarine Ltd. biomass figures by major taxonomic groups. The total biomass values obtained by the participating laboratories varied greatly with those obtained by Thomson Unicomarine Ltd. The average was a +14.6% difference between the two sets of results (i.e. heavier than Thomson Unicomarine Ltd.); the range was from – 12.8% to +55.9%. The reason for these large differences is presumably a combination of variations in apparatus (e.g. calibration) and operator technique (e.g. period of, and effort applied to, drying). Further analysis of biomass results by major taxonomic groups indicated an average difference of +20.1% for polychaetes, +28.2% for oligochaetes, +9.9% for nemerteans, +22.6% for crustaceans, +4.2% for echinoderms, +8.3% for molluscs and +12.1% for all remaining faunal groups. These figures are vastly different to those produced by this same exercise in each of the previous years. This emphasises the variability caused by not only duration and method of drying but also the consistency of results within each major taxonomic group. The Thomson Unicomarine Ltd. biomass data was achieved using a non-pressure drying procedure as specified in the Green Book.

2.5.3 Discussion

Considering just the Bray-Curtis index, as a measure of similarity between the results obtained by the participating laboratories and those obtained from re-analysis, participating laboratories performed far better in the OS exercise compared to the MB18 exercise. The average value of the index was 94.4% for the OS, compared with 77.7% for MB18. Both modules have produced several good results and some instances of excellent sample processing.
There were ninety-nine samples submitted for this module, including seventeen samples that were processed by the Scheme’s external auditor. Four laboratories (LB1712, LB1722, LB1728 and LB1738) did not supply data for Own Sample selection; these laboratories are not directly responsible for CSEMP samples and are therefore not deemed to have failed the Scheme’s standards.

Approximately 86% of the ninety-nine samples reported exceeded the 90% Bray-Curtis pass mark and approximately 78% of the samples exceeded 95% Bray-Curtis similarity. The average Bray-Curtis similarity index achieved was 94.4%. These figures are generally in line with those from previous OS exercises (see Table 6: Own Sample Module Summary Report – OS44, 45 & 46).

Since the beginning of the OS component nine hundred and eleven admissible samples have been received (OS01-46, excluding this year’s externally audited Own Samples), with an average Bray-Curtis similarity figure of 93.59%. One hundred and sixty-nine samples (19%) have fallen below the 90% pass mark. One hundred and twenty-one samples have achieved a similarity figure of 100% (13% of all returns). Extraction of fauna is an area in which several participating laboratories could review their efficiency. All countable fauna must be extracted to record a truly representative sample, although this is rarely the case due to time restraints or inefficient methods used. A sample that has been poorly picked stands a high possibility of being unrepresentative regardless of the quality of subsequent faunal identifications, and should the sorted residue be disposed, this cannot be rectified. Laboratories should study their detailed OS and MB reports and target the particular taxon or groups of taxa that are being commonly overlooked during the picking stages of sample analysis. It must be resolved whether the individuals are either not recognised as countable or not scanned using the extraction methods employed. If it is the former, then training is appropriate. If the latter is the case then a review of current extraction methods should be conducted. Some instances of repeated taxonomic errors in Own Samples from previous Scheme years have been noted. Taxonomic errors should be investigated by participating laboratories even if the ‘whole sample’ has achieved a ‘pass’ flag. If a participating laboratory disagrees with any recorded taxonomic errors they should contact Thomson Unicomarine Ltd for further information (as they are invited to do so upon receipt of their Own Sample Interim Report).

2.5.4 Application of NMBAQC Scheme Standards

One of the key roles of the Invertebrate and Particle Size components of the NMBAQC Scheme is to assess the reliability of data collected as part of the Clean Seas Environment Monitoring Programme (CSEMP; formerly UK NMMP). With this aim performance target standards were defined for certain Scheme exercises and applied in Scheme year three (1996/97). These standards were the subject of a review in 2001 (Unicomarine, 2001) and were altered in Scheme year eight; each performance standard is described in detail in the...
Laboratories meeting or exceeding the required standard for a given exercise would be considered to have performed satisfactorily for that particular exercise. A flag indicating a ‘Pass’ or ‘Fail’ would be assigned to each laboratory for each of the exercises concerned. It should be noted that, as in previous years, only the OS and PS exercise have been used in ‘flagging’ for the purposes of assessing data for the CSEMP.

As the Scheme progresses, additional exercises may be included. In the meantime, the other exercises of the Scheme as presented above are considered of value as more general indicators of laboratory performance, or as training exercises.

Non-return of samples for the OS module resulted in the assignment of a "Fail" flag to the laboratory. The only exception to this approach has been in those instances where laboratories elected not to participate in the module.

2.5.4.1 Laboratory Performance

The target values for each Own Sample exercise and the corresponding laboratory results are presented in Table 5 (Own Sample Module Summary Report – OS44, 45 & 46). The assigned flags for each exercise are also given. An assessment is performed separately for each of the three OS samples. Comparisons between exercise results are commonly inapplicable due to the diversity of samples and processing methodologies exhibited throughout this module.

It can be seen from Table 5 (columns 4, 13 and 22) that for the OS exercise the majority of laboratories are considered to have met or exceeded the required standard for three of the OS targets - the enumeration of taxa and individuals and the Bray-Curtis comparison. Overall 97% of the comparisons were considered to have passed the enumeration of taxa standard; 96% exceeded the enumeration of individuals standard and 86% passed the Bray-Curtis comparison standard. NMBAQC Scheme / CSEMP sample flags have been applied to each of the Own Samples in accordance with the performance flagging criteria introduced in Scheme year eight (Table 5, column 23); eleven of the ninety-nine applicable samples are flagged as ‘Fail - Bad’; three are flagged as ‘Fail - Poor’; eight are flagged as ‘Pass - Acceptable’; fifty-nine are flagged as ‘Pass - Good’; and eighteen are flagged as ‘Pass - Excellent’ for achieving 100% Bray-Curtis similarity indices. All the laboratories with ‘Poor’ or ‘Bad’ sample flags have been provided with specific recommendations of remedial actions to quality assure their Own Sample data sets (see 2.5.4.3 Remedial Action below).

Performance with respect to the biomass standard was poorer (Table 5, column 19) with 70% of the eligible samples meeting the required standard. It should be noted that there were
laboratories for which the results from the biomass exercise should be considered unsuitable for comparison with the standard (expressed as five decimal places instead of the requested four, and fauna rendered dry or damaged by initial biomass procedures).

2.5.4.2 Comparison with Results from Previous Years

A comparison of the overall results for recent years is presented in Table 6 (Own Sample Module Summary Report – OS44, 45 & 46). The Table shows the number of laboratories assigned ‘Pass’ and ‘Fail’ flags for the OS exercises over the past sixteen years based upon the current NMBAQC Scheme standards (see Description of the Scheme Standards for the Benthic Invertebrate Component). This year’s ninety-nine Own Samples resulted in a pass rate of 86% (the highest being 100% achieved in exercise OS01 that involved just fourteen samples; the lowest being 67% recorded in Year 7 from forty-five samples). The number of non-returned results, ‘Deemed Fails’, have been significantly reduced in recent years of the Scheme. This can be attributed to the ‘deadline reminders’ dispatched throughout the Scheme year. Table 7 shows the trend of OS results for each participating laboratory over the past sixteen years. There appears to be a fairly high level of consistency within each laboratory with an overall increase in data quality, i.e. generally fewer failing samples and a higher average Bray-Curtis similarity score. The commitment of participants to address ‘failing’ samples is also increasingly evident; these remedial actions are highly commendable and reflect the value of quality assured data (see 2.5.4.3 Remedial Action). Monitoring the situation over a longer period is required before a firm statement about changes in laboratory standards could be made. However, the introduction of ‘blind’ audits in Scheme year eight has not caused an increase in the number of failures, as initially expected.

2.5.4.3 Remedial Action

It is imperative that failing CSEMP (formerly UK NMMP) samples, audited through the Own Sample exercise, are addressed. Remedial action should be conducted upon the associated CSEMP replicates to improve upon the flagged data. The revised NMBAQC Scheme OS standards, introduced in Scheme year eight, give clear methods for discerning the level of remedial action required (see Description of the Scheme Standards for the Benthic Invertebrate Component). A failing Own Sample is categorised by the achievement of a Bray-Curtis similarity indices of <90%. The performance indicators used to determine the level of remedial action required are %taxa in residue, %taxonomic errors, %individuals in residue (see Table 5, columns 7, 10 and 16 in Own Sample Module Summary Report – OS44, 45 & 46) and %count variance. Own Samples not achieving the required standards are monitored by the NMBAQC committee. The participating laboratories are expected to initiate remedial action and notify Thomson Unicomarine or the NMBAQC Scheme Contract Manager when this has been completed. Any remedial action undertaken should be audited externally where required. The NMBAQC Contract Manager and Scheme’s contractor, Thomson Unicomarine
L.Ltd., will provide clarification on specific details of remedial action or consider appeals relating to the remedial action process.

Below is a summary of the samples that have been flagged with ‘fail’ flags in Scheme year 17 (see 2.5.4.3.7). Also ‘failing’ samples with outstanding remedial action from the previous six Scheme years are listed.

2.5.4.3.1 Scheme Year 11 (OS26, 27 & 28) – 2004/05

Three samples ‘failed’ in Scheme year 11 (including two UK NMMP samples). Remedial action, outlined below, is still outstanding for the associated replicates of the following Own Samples:

NMMP samples

- LB1110 OS26- Review *Fabricia stellaris / Manayunkia aestuarina* identifications;
 - Re-sort residue for remaining replicates and re-audit.
 - Remedial Action - status unknown.

 - Remedial Action - status unknown.

Non-NMMP samples

- LB1120 OS28- Review policy for recording *in-situ* records;
 - Review identification of live versus dead *Hydrobia ulvae*.
 - Remedial Action - status unknown.

2.5.4.3.2 Scheme Year 12 (OS29, 30 & 31) – 2005/06

Seven samples ‘failed’ in Scheme year 12 (including five UK NMMP samples). Remedial action, outlined below, is still outstanding for the associated replicates of the following Own Samples:

NMMP samples

- LB1226 OS31- Review *Bathyereia elegans / B. pelagica* identifications;
 - Remedial Action - status unknown.

Non-NMMP samples

- LB1201 OS29- Reprocess residues for remaining replicate samples;
 - Review identifications of *Pholoe inornata, Monocorophium sextonae, Eumida sanguinea* and *Malmgreniella arenicolae*.
 - Remedial Action - status unknown.
2.5.4.3.3 Scheme Year 13 (OS32, 33 & 34) – 2006/07

Six samples ‘failed’ in Scheme year 12 (including three UK NMMP samples). All recommended remedial actions for Year 13 have been successfully completed. All Own Samples and associated data are deemed to have fulfilled the Schemes quality assurance standards.

2.5.4.3.4 Scheme Year 14 (OS35, 36 & 37) – 2007/08

Twelve samples ‘failed’ in Scheme year 14 (including five CSEMP samples). Remedial actions for nine of these samples has been successfully completed (including the five CSEMP samples); remedial action is still outstanding for the associated replicates of the following three Own Samples:

- **Non-CSEMP samples**
 - LB1429 OS35- Reprocess residues for associated replicate samples. Submit revised data for random selection of additional sample for audit.
 - Review faunal extraction policy.
 - Remedial Action - status unknown.
 - LB1429 OS36- Review *Spisula elliptica / S. solid*a identifications.
 - Reprocess residues for associated replicate samples. Submit revised data for random selection of additional sample for audit.
 - Review faunal extraction policy.
 - Remedial Action - status unknown.
 - LB1431 OS37- Reprocess taxonomic errors for any associated samples; *Dosinia lupinus / Lucinoma borealis, Modiolus modiolus / Mytilus edulis* juv., *Isaedae / Autonoe longipes and Photis longicaudata / Aoridae* (female) identifications.
 - Review faunal extraction methods and reprocess residues for any associated samples. Submit revised data for random selection of additional sample for audit.
 - Remedial Action - status unknown.

2.5.4.3.5 Scheme Year 15 (OS38, 39 & 40) – 2008/09

Twenty-four samples ‘failed’ in Scheme year 15 (including five CSEMP samples). Remedial actions for twenty-one of these samples has been successfully completed (including all five CSEMP samples); remedial action is still outstanding for the associated replicates of the following three Own Samples:
Non-CSEMP samples
LB1505 OS40- Reprocess residues for associated samples.
Submit revised data (associated samples) for the selection of an additional sample for audit (residue resort audit only) via an external auditor. This remedial action effectiveness audit is available free of charge from Unicomarine.
Remedial Action - status unknown.

LB1508 OS40- Review the taxonomic error (*Liljeborgia kinahani*).
Reprocess residues for associated samples.
Submit revised data (associated samples) for the selection of an additional sample for audit (residue resort audit only) via an external auditor. Remedial action effectiveness audit is available free of charge from Unicomarine.
Remedial Action - status unknown.

LB1525 OS39- Reprocess sample residues for associated samples.
Supply remedial action revised data matrix for the random selection of one sample for external audit (faunal extraction efficiency only).
Remedial Action - status unknown.

2.5.4.3.6 Scheme Year 16 (OS41, 42 & 43) – 2009/10
Eighteen samples ‘failed’ in Scheme year 16 (including four CSEMP samples). Remedial actions for ten of these samples has been successfully completed (including three of the four CSEMP samples); remedial action is still outstanding for the associated replicates of the following seven Own Samples:

CSEMP samples
LB1617 OS43- Review taxonomic errors for associated samples.
Remedial Action - status unknown.

Non-CSEMP samples
LB1625 OS42- Reprocess associated sample residues.
Reprocess taxonomic errors for associated samples.
Submit revised data matrix for selection of one sample for full audit.
Remedial Action - status unknown.

LB1625 OS43- Remedial action as LB1625 OS42 (see above).
Remedial Action - status unknown.
LB1627 OS41- Reprocess associated sample residues.
Reprocess taxonomic errors for associated samples.
Submit revised data matrix for selection of one sample for full audit.
Remedial Action - status unknown.

LB1627 OS43- Remedial action as LB1627 OS41 (see above).
Remedial Action - status unknown.

LB1633 OS41- Reprocess associated sample residues.
Reprocess taxonomic errors for associated samples.
Submit revised data matrix for selection of one sample for full audit.
Remedial Action - status unknown.

LB1633 OS43- Remedial action as LB1633 OS41 (see above).
Remedial Action - status unknown.

2.5.4.3.7 Scheme Year 17 (OS44, 45 & 46) – 2010/11
Fourteen samples ‘failed’ in Scheme year 17 (including four CSEMP samples). Remedial action, outlined below, was required for associated replicates of the following Own Samples:

CSEMP samples

LB1705 OS45- Review taxonomic error for associated samples.
Remedial Action - completed (27/05/2012).

LB1705 OS46- Review taxonomic errors for associated samples.
Remedial Action - completed (27/05/2012).

LB1726 OS44- Reprocess taxonomic errors for associated samples.

LB1741 OS46- Review taxonomic error for associated samples.
Remedial Action - completed (03/09/2012).

Non-CSEMP samples

LB1703 OS44- Reprocess the taxonomic errors for associated samples.

LB1704 OS46- Review the taxonomic errors (+transcription error?) for associated samples.
Review faunal extraction methodology for associated samples.
Remedial Action - completed (04/07/2012).

LB1710 OS45- Review the estimation of taxa for associated samples.
Reprocess the taxonomic errors for associated samples.
Remedial Action – completed (06/01/2012).

LB1710 OS46- Review the estimation of taxa for associated samples.
Review the taxonomic errors for associated samples.
Remedial Action – completed (06/12/2012).

LB1714 OS45- Review the taxonomic errors for associated samples.
Remedial Action - status unknown.

LB1720 OS44- Reprocess associated sample residues.
Reprocess taxonomic errors for associated samples.
Submit revised data matrix for selection of one sample (to represent OS44,45 & 46 remedial action) for faunal identification audit only.
Remedial Action - status unknown.

LB1720 OS45- Remedial action as LB1720 OS44 (see above).
Remedial Action - status unknown.

LB1720 OS46- Remedial action as LB1720 OS44 (see above).
Remedial Action - status unknown.

LB1737 OS45- Reprocess associated sample residues.
Reprocess taxonomic errors for associated samples.
Submit revised data matrix for selection of one sample for full audit.
Remedial Action - status unknown.

LB1737 OS46- Reprocess associated sample residues.
Review taxonomic errors for associated samples.
Submit revised data matrix for selection of one sample for full audit.
Remedial Action - status unknown.

3. **Conclusions and Recommendations**

A number of observations may be made from the results of the exercises described above. The following is a summary of the major points of importance.
1. The majority of participating laboratories submit data / samples in accordance with the Scheme’s timetable, however late submissions are still the major contributing factor for delaying the production of exercise bulletins / reports. Laboratories should endeavour to report their results within the requested time according to the deadlines circulated at the beginning of each Scheme year; this would greatly facilitate the analysis of results and effective feedback.

2. Several samples submitted as Own Samples comprised very small volumes of sorted residues and no faunal fragments. Participants are reminded that Own Samples must include all sorted residues, including all extracted materials deemed ‘unrecordable’ during the initial processing.

3. All Scheme participants use e-mail as their primary means of communication. All interim results / reports are now provided as secure PDF documents via direct email or posted on the Scheme’s website. Electronic methods of communication, data transfer and reporting are to continue and expand wherever possible; hard copies of data sheets will be provided only where appropriate or specifically requested. An NMBAQC Scheme group has been created on the professional social media website, LinkedIn (www.linkedin.com); participants are encouraged to join this group to share taxonomic information and receive notifications regarding the forthcoming events and the day-to-day activities of the scheme.

4. Laboratories involved in CSEMP data submission should endeavour to return data on all necessary components of the Scheme in the format requested. This will be required to allow the setting of performance “flags”. Non-return of data will result in assignment of a “Fail” flag. For CSEMP laboratories this deemed “Fail” for no submitted data is to be perceived as far worse than a participatory “Fail” flag. Participating laboratories are assigned ‘deemed fail’ flags as a result of not informing Thomson Unicomarine Ltd. of their intentions to abstain from particular exercises. Participating laboratories should ensure that any changes to the level of their subscription / participation in the Scheme’s modules are communicated to Thomson Unicomarine Ltd as soon as possible.

5. There were continued problems associated with the measurement of biomass for individual species. In this and previous Scheme years several laboratories, despite using blotted wet weight biomass techniques, rendered some of their specimens too damaged to be re-identified. Some laboratories are still presenting data to five or three decimal. This produces spurious errors due to nominal weights one hundred times smaller than those reported at four decimal places. The initial processing of a CSEMP sample should in no way compromise the effectiveness of an audit. Biomass procedures should not render the specimens unidentifiable; trials should be commissioned to derive the best protocol for the blotted weighing technique. Biomass must be reported to four decimal places with nominal weights recorded as 0.0001g. A standardised protocol is available and must be followed for CSEMP analysis.
6. The maintenance of a comprehensive reference collection has numerous benefits for improving identification ability, maintaining consistency of identification between surveys and access to growth series material. The Laboratory Reference exercise (LR) can be used as a means of verifying reference specimens. Laboratories are strongly recommended to implement and expand in-house reference collections of fauna. The inclusion of growth series material is extremely useful for certain faunal groups, e.g. identifying certain molluscs. All surveys should have an associated reference collection to enable ease of cross-checking or adopting future taxonomic developments.

7. Participants submitting data for the ring test exercises should complete the 'confidence level' section of their datasheets to enable additional information to be gathered regarding the difficulty of ring test specimens.

8. Differences in the literature used for identification of invertebrates have been highlighted by the RT, MB and OS exercises. Unpublished keys from Scheme workshops, etc. will continue to be posted on the Scheme's website. The Scheme has produced a UK Standard Taxonomic Literature database. Laboratories are encouraged to review the content and give details of additions wherever possible.

9. All OS sample submissions must be accompanied with a ‘processing details sheet’ to ensure that the re-analysis (audit) matches that of the initial processing. Laboratories should also ensure that these sheets are completed accurately. Own Samples processed for CSEMP/WFD must be processed according to the NMBAQC guidelines (Worsfold, Hall & O’Reilly (Ed.), 2010).

10. The Own Sample component has shown repeated taxonomic errors for some laboratories from the same UK NMMP / CSEMP sites over several years. Participating laboratories are encouraged to redress or resolve disagreements for taxonomic errors reported in their Own Samples even if their ‘whole samples’ achieve a ‘pass’ flag.

11. There are still some problems of individuals and taxa missed at the sorting stage of Own Sample analysis. This is an area that is often the major contributing factor in samples with ‘fail’ flags or low Bray-Curtis similarity indices. When taxa and individuals are missed during the extraction of fauna from the sediment, laboratories should determine why certain taxa have not been extracted. This could be due to the taxon not being recognised as countable or due to problems with the effect of stains upon the specimens. There may also be a problem within certain taxonomic groups (e.g. crustaceans floating within sample or molluscs settled within the coarser sediment fractions). Additional training may be required and a review of existing extraction techniques and internal quality control measures may be beneficial.

12. In Scheme year seven a NMBAQCS Sorting Methods Questionnaire was circulated to all laboratories participating in macrobenthic analysis components (OS & MB). The responses showed that little or no consistency in extraction or identification protocols
existed between participating laboratories. The results of this questionnaire have been reported separately to the participating laboratories (Worsfold & Hall, 2001). The report concluded that there is a need for standardisation of extraction protocols, in terms of which fauna are extracted/not extracted. Also a consensus needs to be reached for what constitutes ‘countable’ individuals and at which taxonomic level specific taxa should be identified. Protocols are to be developed to standardise the approach towards headless and partial specimens. This also has implications for comparing biomass estimations; certain laboratories pick headless portions of specimens from residues and assign them to the relevant taxa for combined biomass measurements. In Scheme year eight RT19 targeted ‘Oligochaeta and similar fauna’ and was complimented by a questionnaire regarding oligochaete identification. The ring test and accompanying questionnaire were reported to the participating laboratories (Hall & Worsfold, 2002) and reiterated the need for a standard identification protocol for UK NMMP samples. A proposal for a standard NMMP approach to oligochaete identification was included in the report. Artificial macrobenthic samples circulated as MB11 (Yr10) and MB17 (Yr16) showed that identical samples processed by differing laboratories can result in sample data that are interpreted as having little similarity due to inconsistency of extraction, enumeration and identification policy. Initial standard statutory monitoring protocols were developed through the NMBAQC Scheme, to standardise the faunal groups to be extracted from CSEMP / WFD samples and reasonable levels of identification for all taxa likely to be encountered. MB samples this year (MB18) were required to be processed according to the NMBAQC guidelines for processing macrobenthic samples (Worsfold, Hall & O’Reilly (Ed.), 2010). These guidelines have improved the consistency of analysis, i.e. all analysts extracting and recording all biota. A detailed taxonomic discrimination policy (TDP) needs to be developed and added to the processing requirement protocol (PRP) to ensure that macrobenthic data from multiple analysts are as consistent and intercomparable as possible.

13. An improved learning structure to the Scheme through detailed individual exercise reports has been successfully implemented and was continued in this Scheme year. For the LR, OS and MB exercises, detailed results have been forwarded to each participating laboratory as soon after the exercise deadlines as practicable. After each RT exercise a bulletin was circulated, reviewing the literature used and detailing the correct identification of the taxa circulated. Participants are encouraged to review their exercise reports and provide feedback concerning content and format wherever appropriate.

14. Positive, constructive feedback has been received from participants during Scheme Year 17. As in previous years participants have expressed the benefits of the modules, especially RT and OS. The primary aim of this component of the Scheme is to improve the quality of biological data via training and audit modules. An informal constructive reporting system exists to assist in the overall improvement of data quality. For example,
laboratories struggling with particular faunal groups in their Own Samples often receive additional support as well as receiving their returned OS faunal material separated according to the AQC identifications for future reference. Eight of the fourteen ‘failing’ Own Samples in Scheme Year 17 have already been rectified via the recommended remedial action.

4. **References**

www.jncc.gov.uk/MarineHabitatClassification

